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Environmental and other xenobiotic agents can cause autoimmunity. Examples include
drug-induced lupus, toxic oil syndrome, and contaminated L-tryptophan ingestion. Numerous
mechanisms, based on in vitro evidence and animal models, have been proposed to explain how
xenobiotics induce or accelerate autoimmunity. The majority of these can be divided into three
general categories. The first is those inhibiting the processes involved in establishing tolerance by
deletion. Inhibiting deletion can result in the release of newly generated autoreactive cells into the
periphery. The second mechanism is the modification of gene expression in the cells participating in
the immune response, permitting lymphocytes to respond to signals normally insufficient to initiate
a response or allowing the antigen-presenting cells to abnormally stimulate a response. Abnormal
gene expression can thus disrupt tolerance maintained by suppression or anergy, permitting
activation of autoreactive cells. The third is the modification of self-molecules such that they are
recognized by the immune system as foreign. Examples illustrating these concepts are presented,
and related mechanisms that have the potential to similarly affect the immune system are noted.
Some mechanisms appear to be common to a variety of agents, and different mechanisms appear
to produce similar diseases. However, evidence that any of these mechanisms are actually
responsible for xenobiotic-induced human autoimmune disease is still largely lacking, and the
potential for numerous and as yet unidentified mechanisms also exists. Key words: anergy,
autoimmunity, deletion, mechanisms, suppression, tolerance, xenobiotic.- Environ Health
Perspect 1 07(suppl 5):737-742 (1999).
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Irrefutable evidence shows that xenobiotic
agents can cause autoimmunity. Examples
include drug-induced lupus (1), toxic oil syn-
drome (2,3), and contaminated L-tryptophan
ingestion (4,5). Numerous mechanisms,
based on in vitro evidence and animal models,
have been proposed to explain how xenobi-
otics may induce or accelerate autoimmunity.
This report is a review of potential mecha-
nisms, which are illustrated with specific
examples. However, despite the body of litera-
ture reviewed herein, evidence that the pro-
posed mechanisms are operant in people with
xenobiotic-induced autoimmunity is still
largely lacking. For example, the mechanisms
involved in the pathologic processes by which
drugs induce lupuslike autoimmunity have
not yet been elucidated in humans. The mul-
tiple potential mechanisms, together with our
lack of understanding of mechanisms involved
in the human diseases, highlight a need for
further study in this area.

Tolerance
Most proposed mechanisms of autoimmunity
involve cells of the immune system escaping
tolerance. Tolerance refers to the phenome-
non in which the immune system responds to
and eliminates foreign organisms or molecules
but ignores the host. Autoimmunity results
when homeostatic mechanisms fail and the
immune system responds to the host. The tol-
erance of host molecules is not inherent to the
immune system but is acquired during devel-
opment and actively maintained throughout

life. Multiple mechanisms are used to silence
potentially autoreactive lymphocytes. Most of
the mechanisms involve either deletion,
anergy, or suppression (6-8). Deletion refers
to the elimination of self-reactive T and B
lymphocytes by apoptosis and occurs during
maturation as well as in mature lymphocytes.
By its nature, deletion is irreversible, but the
processes involved must be continuously
maintained to prevent the generation of new
autoreactive cells. Anergy is the induced unre-
sponsiveness to conventional antigenic stimu-
lation, and the anergic lymphocytes survive as
functionally inactive cells. T-cell anergy can be
induced by multiple mechanisms such as anti-
gen presentation in the absence of costimula-
tory signals like those provided by the
B7/CD28 molecules, which normally support
T-cell activation through the T-cell antigen
receptor (TCR) (9). Anergy can be reversible
(6-10) and thus also requires continuous
maintainence. Suppression is also an active
process in which responses to self-antigens are
suppressed by other cells and factors derived
from them (8). These processes are discussed
in greater detail in the sections that follow.
The active nature of immune tolerance
implies that events or chemicals that inhibit
the mechanisms maintaining tolerance have
the potential of allowing the generation or
activation of autoreactive cells, with the subse-
quent development of autoimmunity. Because
the systems involved are complex, there are a
correspondingly large number of ways by
which tolerance can be disrupted.

Mechanisms Disrupting
Tolerance
Most of the mechanisms by which xenobiotics
disrupt tolerance can be grouped into three
general categories. The first is those inhibiting
the processes involved in establishing tolerance
by deletion, permitting release of autoreactive
cells in the periphery. The second is modifica-
tion of gene expression in the cells participat-
ing in the immune response, permitting

lymphocytes to respond to signals normally
insufficient to initiate a response or allowing
the antigen-presenting cells to abnormally
stimulate a response. Abnormal gene expres-

sion can thus disrupt tolerance maintained by
anergy or suppression and permit activation of
autoreactive cells. The third is the modification
of self-molecules such that they are recognized
by the immune system as foreign. These cate-
gories are not necessarily mutually exclusive,
and some xenobiotics may affect tolerance by
multiple mechanisms. Examples illustrating
these concepts are presented in the sections
that follow and are summarized in Table 1.

Abnormalities of Tolerance
Induction by Deletion
The Ipr and gld mouse strains offer two of the
clearest demonstrations that abnormalities of
deletion can result in systemic autoimmunity
(11-13). These strains develop a lupuslike
disease that includes the production of anti-
nuclear antibodies as well as massive lymphoid
proliferation. The Ipr and gld mutations result
in the functional loss of genes encoding Fas
and Fas ligand (FasL), respectively, which are
involved in triggering apoptotic cell death
(11,12). During normal thymic development,
potentially autoreactive thymocytes are elimi-
nated by apoptosis, triggered by Fas-FasL
interactions (central tolerance). A similar
process can occur in the periphery (peripheral
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Table 1. Potential mechanisms of xenobiotic-induced
autoimmunity.

Xenobiotics may break tolerance by
Inhibiting deletion of autoreactive cells
Modifying gene expression to reverse anergy or
prevent suppression by
Modifying chromatin structure
Stimulating or inhibiting signaling molecules
Stimulating or inhibiting cytokine receptors
Acting as endocrine disruptors

Altering antigenicity of self-molecules by
Acting as haptens
Cleaving self-molecules to generate cryptic epitopes
Acting as superantigens

tolerance) (12). Mice with mutations in Fas
or FasL fail to eliminate the autoreactive
T cells, resulting in the subsequent develop-
ment of autoimmunity (11-13). Humans
with defects in these genes develop auto-
immune hemolytic anemia, thrombocytope-
nia, and neutropenia, supporting the
association with autoimmunity (14). These
examples provide persuasive evidence that
inhibiting deletion can produce an auto-
immune disease and raise the possibility that
xenobiotics might have a similar effect.
Because the mechanisms identifying the
potentially autoreactive cells are not well
understood, the possibility also exists that
xenobiotics could disrupt the selection
process, resulting in release of autoreactive
cells. However, this will remain speculative
until the mechanisms identifying the auto-
reactive cells are better characterized.

Other animal models demonstrate that
exogenous agents can affect central tolerance
to produce autoimmunity. Cyclosporine A
(CsA), an immunosupressant believed to act
by blocking T-cell signal transduction (15),
can interfere with central tolerance induction.
Lethally irradiated, bone marrow-reconsti-
tuted mice will develop autoimmunity if
given high-dose CsA. These mice develop
T-lymphocyte and macrophage-rich inflam-
matory lesions in the colon, stomach, liver,
and pancreas. The autoimmune disease can
be tranferred by injecting T lymphocytes
from affected mice into naive genetically
identical (syngeneic) recipients, indicating
that autoreactive lymphocytes are responsible.
In this model, CsA appears to prevent thymic
deletion by blocking signaling during the
negative thymic selection step. This prevents
activation of autoreactive thymocytes by self-
molecules and thus prevents their subsequent
apoptotic elimination (16).

Radiation can also interfere with tolerance.
High-dose fractionated total lymphoid irradia-
tion causes a variety of organ-specific autoim-
mune diseases in BALB/c mice. These indude
autoimmune gastritis with antiparietal cell
antibodies, thyroiditis with antithyroglobulin
antibodies, sialoadenitis, and orchitis, depend-
ing on the radiation dose. CD4+ T cells from

these mice adoptively transfer the auto-
immunity to naive syngeneic mice, suggesting
that irradiation is interfering with mechanisms
inducing T-cell tolerance or anergy in these
mice (17). Neonatal thymectomy produces a
similar CD4+ T-cell-mediated autoimmune
disease (18), which further supports this con-
cept. An autoimmune disorder characterized
by skin rash and occasionally autoimmune
thrombocytopenia or hemolytic anemia has
been reported in breast cancer patients receiv-
ing autologous stem cell transplantations
(19), suggesting that a similar disorder may
occur in humans.

Disruption of central tolerance may play a
role in drug-induced lupus. Procainamide can
be metabolized to procainamide hydroxy-
lamine (PAHA) by reactive oxygen species.
Injecting PAHA into the thymus of non-
autoimmune mice induces IgG anti-
chromatin antibodies that are sustained over
several months (20). In vitro studies have
shown that PAHA transiently prevents the
induction of anergy in mature T lymphocytes
(21), suggesting that PAHA may similarly
prevent tolerance established during thymic
development. The PAHA model illustrates
the principle that small organic molecules can
disrupt central tolerance to result in the pro-
duction of antinuclear antibodies. However,
evidence that this process contributes to
human drug-induced lupus is still lacking.

Modification of Cellular Gene
Expression
Evidence indicates that xenobiotics can break
tolerance by modifying gene expression in cells
participating in immune responses. In several
of these systems a valid link to autoimmunity
has been established using animal models.
Xenobiotics can modify gene expression in
lymphocytes as well as antigen-presenting cells
by acting on receptors, their signaling path-
ways, or at the DNA level. Examples indude
endocrine disrupters and agents that mimic or
inhibit the effects of cytokines on their recep-
tors, agents affecting kinases and phosphatases
to activate or inhibit signaling, and agents that
modify chromatin structure to affect gene
expression. Changes in gene expression caused
by any of these mechanisms may either break
tolerance by modifying mechanisms involved
in suppression or anergy or augment a ten-
dency to develop autoimmunity.

Xenobiotic Modificaion ofChrmatin
Structre and Gene Expression
Changes in T-cell DNA methylation have
been implicated in the development of
autoimmunity. DNA methylation refers to
the postsynthetic methylation of deoxycytosine
(dC) residues at the 5 position. Methylation of
dC residues in promoter sequences can

suppress gene expression through mechanisms
involving specific methylcytosine-binding pro-
teins and changes in chromatin structure
(22,23). These changes prevent transcription
factors from interacting with promoter
sequences, thereby suppressing gene expres-
sion. DNA methylation patterns are estab-
lished during ontogeny, then maintained
through subsequent mitoses by DNA methyl-
transferase (MTase), which replicates methyla-
tion patterns in newly synthesized DNA (24).
Pharmacologic inhibition of DNA MTase
with the nucleoside analog 5-azacytidine
causes overexpression of the adhesion mole-
cule lymphocyte function-associated antigen 1
(LFA-1) as well as autoreactivity in cloned,
antigen-specific CD4+ T cells (25). The
autoreactivity is due to the LFA-1 overexpres-
sion because causing LFA-1 overexpression by
transfection causes a similar autoreactivity
(26,27). Therapeutic concentrations of pro-
cainamide and hydralazine also inhibit DNA
methylation, increase LFA-1 expression, and
cause autoreactivity in T-cell lines (26-29).
Adoptive transfer of murine T cells rendered
autoreactive by treatment with 5-azacytidine,
procainamide, or hydralazine into nonautoim-
mune syngeneic mice leads to widespread
autoimmune disease with anti-DNA anti-
bodies, proliferative glomerulonephritis, pul-
monary alveolitis, liver lesions resembling
primary biliary cirrhosis, and histologic
changes in the brain resembling central ner-
vous system lupus (30,31). Ultraviolet light,
implicated in triggering lupus flares, has a sim-
ilar effect on T cells (26). These findings sug-
gest a model for xenobiotic induction of
lupuslike autoimmunity in which inhibiting
DNA methylation in T lymphocytes modifies
gene expression and induces autoreactivity,
and the autoreactive cells can then cause a
lupuslike disease. In support of this, T cells
from patients with active lupus have a reduc-
tion of total genomic deoxymethylcytosine
content and overexpress LFA-1 on an autore-
active T-cell subset, the size of which strongly
correlates with disease activity (25,32).
However, these findings have yet to be identi-
fied in patients with drug-induced lupus.

Xenobiotics can also affect histone
acetylation with effects on gene expression.
The acetylation of histones is associated with
gene expression, whereas deacetylation corre-
lates with transcriptional suppression (33).
An association between DNA methylation
and histone deacetylation has been proposed,
as methylcytosine-binding proteins physically
associate with histone deacetylase, directing
the deacetylase activity to regions of chro-
matin destined for inactivation (23). Similar
to DNA MTase, histone deacetylase is sus-
ceptible to inhibition by xenobiotics with
effects on gene expression, which are
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frequently synergistic with DNA MTase
inhibitors (34). Inhibitors of histone
deacetylase include sodium butyrate (35) and
trichostatin A (34,35). Treating cells with
histone deacetylase inhibitors can alter cell
morphology, induce hemoglobin F produc-
tion, and modify T-cell cytokine expression
(34,36). Altered cytokine production can
affect tolerance (vide infra), suggesting a
mechanism by which histone acetylase
inhibitors might contribute to autoimmunity.
Histone deacetylase inhibitors also reactivate
retroviral expression (36). Reactivation of
latent retroviruses has been proposed as a
mechanism contributing to the development
of autoimmunity (37), although this link to
autoimmunity also remains theoretical.

Adsenosine disphosphate (ADP)-
ribosylation is yet another mechanism
involved in chromatin formation with effects
on gene expression. Poly(ADP-ribosyl)
(PADPR) transferase is a chromatin-bound
enzyme that catalyzes the transfer of ADP-
ribose moieties from nicotinamide adenine
dinucleotide (NAD) to chromatin proteins,
principally histones HI and H2B. ADP-
ribosylation prevents methylation of genes by
modifying histone HI (38,39), thus partici-
pating with DNA methylation and histone
acetylation in modifying chromatin structure.
Several authors have implicated changes in
polyADP-ribosylation with autoimmunity.
Histones coupled to nucleic acids exhibit aug-
mented immunogenicity, and antibodies
against poly(ADP-ribose) occur in idiopathic
systemic lupus erythematosus (SLE) and drug-
induced lupus (40). In addition, both
procainamide and hydralazine upregulate
PADPR polymerase activity in lymphocyte cell
lines (41), which could inhibit DNA methyla-
tion indirectly (38,39). Besides affecting
chromatin, poly(ADP-ribosylation) of
T-cell-surface proteins including LFA-1,
CD8, CD27, CD43, CD44, and CD45 is
known to occur. NAD treatment increases
poly(ADP-ribosylation) of cell-surface proteins
and inhibits antigen-stimulated responses (42).
Further, NAD-treated cells fail to efficiently
home to lymphoid organs, suggesting direct
effects on adhesion molecule expression or
function (42). Finally, a gene contributing to
familial lupus has recently been identified as
PADPR polymerase (43), and defects in
PADPR polymerase have been associated with
idiopathic SLE (44,45). These observations
provide tantalizing clues as to how ADP-ribo-
sylation might contribute to autoimmunity,
but again, mechanisms directly linking changes
in histone ADP-ribosylation to autoimmunity
have not been established.

In summary, DNA methylation, histone
acetylation, and histone polyADP-ribosyla-
tion all contribute to chromatin structure and
thereby to gene regulation. All are susceptible

to modification by xenobiotics, usually in a
synergistic fashion, and at least two lupus-
inducing drugs, procainamide and
hydralazine, have effects on this regulatory
mechanism. This area appears to represent a
potentially fruitful approach to modification
of cells by xenobiotics, with direct relevance
to autoimmunity.

Endocrine Disruptors
Considerable experimental evidence supports
an immunomodulatory role for female sex hor-
mones (46). Females generally have more
robust humoral and cellular immune responses
than males. This has been proposed as an
explanation for the increased prevalence of
autoimmune disease in women (46). Female
sex hormones have been direcdy implicated in
contributing to increased disease severity in
murine models of lupus (46-48), and oral
contraceptives have been associated with
human lupus (49). Thymocytes, T cells,
B cells, macrophages, and endothelial cells
express estrogen receptors (50,51), and treat-
ing immunocytes with estrogens causes
enhanced protooncogene expression, modified
cytokine production, changes in immune cell
apoptosis, and altered adhesion molecule
expression, which may augment an immune
response (50). Recently, lymphocytes have
been shown to traffic differently in male
and female mice, and the differential traffick-
ing to be directly related to increased severity
of autoimmunity in the female mice.
Oophorectomy diminished disease severity
and produced a trafficking pattern resembling
that of males, providing yet another mecha-
nism by which female sex steroids may affect
autoimmunity (52). This sensitivity of the
immune system to hormonal modulation sug-
gests a mechanism by which xenobiotic
endocrine disrupters may contribute to
autoimmunity. Numerous examples of chemi-
cals with estrogenlike activity have been
described and include resveratrol, a phytoestro-
gen present in grapes and a variety of medici-
nal plants (53), and phenol red, a widely used
pH indicator (54). Others are discussed else-
where (53). Although the mechanism by
which xenobiotic endocrine disrupters con-
tribute to autoimmunity remains obscure, the
potential contribution of these agents to
autoimmunity remains a valid concern.

Cytokines
Cytokines can also modify gene expression to
break tolerance. For example, interferon
(IFN)-y upregulates class II major histocom-
patability complex (MHC) molecule expres-
sion on nonlymphoid tissues such as murine
intestinal epithelial cells, allowing antigen pre-
sentation to CD4+ T lymphocytes (55).
Overexpressing IFN-y on islet cells leads to the
development of insulitis and diabetes in mice,

presumably by this mechanism, demonstrating
the pathologic consequences of inappropriate
cytokine secretion or other activity that
induces expression of these molecules (56).
Xenobiotics have the potential of having simi-
lar effects on cells. For example, pharmacologic
concentrations of alimemazine, a phenoth-
iazene, induces de novo MHC class II mole-
cule expression on cultured thyroid epithelial
cells, offering a novel explanation for the
induction of thyroid gland-specific autoreactiv-
ity (57), although in vivo evidence supporting
this hypothesis remains to be established.
Other xenobiotics could have similar effects.

In a related example, exposure to silica has
been associated with the development of
fibrotic and other connective tissue diseases,
including rheumatoid arthritis, scleroderma,
and lupus (58). Pulmonary interstitial fibrosis
is also encountered. In vitro studies have
shown that silica can activate macrophages to
secrete cytokines including interleukin (IL)-1
and tumor necrosis factor (TNF), and increase
surface Fc receptor and MHC class II molecule
expression (58,59). It has been proposed that
secretion of these cytokines and possibly other
functions of silica-activated macrophages
contribute to the fibrosis and possibly the
induction of silica-induced autoimmunity.

Xenobiotics could also interfere with
tolerance mediated by suppression, through
effects on cytokines and chemokines. The
concept of immune suppression has been res-
urrected by the recent observation that certain
cytokines and chemokines have suppressive
effects in selected systems. For example, trans-
forming growth factor P (TGF-,) can sup-
press immune responses, and knockout mice
lacking TGF-P develop inflammatory lesions
in various organs including the heart and
stomach (60,61). Local TGF-3 production
can also establish localized tolerance (62).
These observations raise the theoretical possi-
bility that xenobiotics interfering with TGF-,
actions could induce autoimmunity. Another
example involves T-cell subsets. CD4+ T cells
can be divided into subsets defined by their
cytokine secretion repertoire. T-helper (Th)0
precursor cells produce a relatively wide vari-
ety of cytokines but mature into Th 1 cells
participating in delayed-type hypersensitivity
responses and secreting IFN-y, IL-2, and lym-
photoxin, or mature into Th2 cells promoting
antibody synthesis and secreting IL-4, IL-5,
IL-6, and IL-10 (63). The maturation ofThO
into Thl or Th2 cells can be influenced by
cytokines, with IFN-y suppressing IL-4 pro-
duction and promoting Thl differentiation,
and IL-4 and IL-10 suppressing IFN-y and
promoting Th2 differentiation (63). This
paradigm has been successfully applied to
experimental systems such as collagen-induced
arthritis, where a Thl response is responsible
for disease manifestations and cytokines
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promoting Th2 differentiation suppress the
disease (64). Xenobiotics have the potential to
similarly modify immune responses. A recent
example is the demonstration that DNA
methylation inhibitors together with histone
deacetylase inhibiors will modify IFN-,y and
IL-4 expression in Thi and Th2 cells (65).

Modification of chemokines can have a
similar regulatory effect. For example, corneal
endothelial and lens epithelial cells express lit-
tle or no MHC dass I molecules and are thus
susceptible to natural killer (NK) cell-medi-
ated killing. This is prevented by local
inhibitory factors in the aqueous humor such
as macrophage inhibition factor (MIF),
which prevents perforin granule release from
NK cells; authors have proposed that this
suppressive mechanism prevents immune-
mediated destruction of these cells (66).
Agents interfering with MIF action would
thus permit an autoimmune reaction.

In another example of suppression, TNF
inhibits lupus nephritis in animal models,
suggesting a suppressive role for this cytokine
in lupuslike diseases (67). Administering
anti-TNF agents to patients with rheumatoid
arthritis has induced lupuslike serologies
(68), raising the possiblity that xenobiotic
agents that inhibit TNF production or action
could remove this suppressive effect and con-
tribute to the development of lupuslike dis-
eases, further supporting the concept that
interference with suppression may contribute
to human autoimmunity.

Signaling Modifiers
There are examples of xenobiotics modifying
signaling with the potential of contributing to
autoimmunity. Small organic molecules capa-
ble of specifically inhibiting signaling pathways
have recendy been described, raising the possi-
bility that xenobiotics could have similar
effects. For example, a selective Mekl inhibitor
is available that inhibits signaling through the
Ras-MAPK pathway (69). Treating T lym-
phocytes with this compound decreases DNA
MTase levels, which theoretically contributes
to the development oflupuslike diseases (70).

Programmed cell death is also regulated by
signaling pathways that could be susceptible to
interference by xenobiotics similar to those
affecting other signaling pathways. The obser-
vation that benzo[a]pyrenes alter signaling
(71) and induce apoptosis (72) in vitro sup-
ports this concept. Abnormal cell death with
release of normally sequestered antigens could
theoretically contribute to autoimmunity.
Release of sequestered antigens as the antigenic
stimulus in lupuslike diseases has support from
the DNA hypomethylation model of drug-
induced lupus. In this model, the autoreactive
T cells home to lymphoid tissue where they
induce macrophage apoptosis. Release ofDNA
from the apoptotic cells has been proposed as

the source of antigenic DNA for anti-DNA
antibody synthesis in this model (30,31,52).
Others have proposed that apoptotic cells pro-
vide autoantigens as well (73,74).

Finally, small organic molecules can also
modify gene expression directly. Pyrrole and
imidazone polyamides can permeate living
cells and inhibit transcription of specific
genes (75), which could potentially play a
role in autoimmune as well as other diseases.
The immunologic effects of these agents have
not yet been explored.

The DNA hypomethylation, endocrine
disruption, and cytokine models all demon-
strate that modification of cells participating
in immune responses can contribute to
autoimmunity. The number of potential
mechanisms by which xenobiotics can modify
cells is large. It is likely that as yet unantici-
pated mechanisms will be identified as our
understanding of signaling pathways and reg-
ulation of gene expression improves. This
topic represents an underdeveloped but
potentially interesting area for study.

Antigen Modification
Another category of potential mechanisms for
xenobiotic-induced autoimmunity is the mod-
ification of self-proteins to break tolerance and
induce an immune response. This concept has
its roots in early studies on haptens and has
been extended by the newer concepts of cryp-
tic epitopes and epitope spreading. A cryptic
epitope is a new antigenic determinant, or epi-
tope, created by the cleaving of a molecule.
Epitope spreading refers to the generation of
immune responses to antigenic determinants,
or epitopes, physically adjacent to the immu-
nizing epitope. Extensive experimental
evidence exists to support the concepts of
haptenization and cryptic epitopes in auto-
immunity, although as in the other proposed
mechanisms, direct proof of causation needs
confirmation in patients or animals with
xenobiotic-induced diseases.

Haptenization
The general concept of haptenization is that
proteins can be chemically modified by com-
bination with small reactive compounds
called haptens, improving antigenicity. Early
studies demonstrated that covalent coupling
of haptens such as trinitrophenol to proteins
produced potent antigens (76). Urushiol, the
irritant in poison ivy, is a linically relevant
example of this (76). Once a response is initi-
ated, the phenomenon of epitope spreading
may occur, in which antigenic epitopes asso-
ciated with but physically distinct from the
hapten are progressively recognized by
responding T and B cells (77). The phenom-
enon of epitope spreading is dearly demon-
strated in the development of the immune
response to small ribonucleoproteins in lupus

(78). The concept of haptenization of -
self-proteins, together with epitope spreading,
has prompted the hypothesis that some xeno-
biotics induce autoimmunity to self-proteins
through a similar mechanism.

Numerous examples illustrating this
concept have been described. Heavy metals
have been implicated in triggering some
forms of autoimmunity (76). Heavy metal
ions of mercury, gold, and nickel will bind
proteins, altering molecular and antigenic
properties. Mercuric chloride can induce
antifibrillarin antibodies in susceptible mouse
strains (79), and mercury ions will bind fib-
rillarin, potentially altering its antigenicity
(80). Hydralazine, procainamide, and to a
lesser degree, isoniazid and D-penicillamine
change the usual right-handed helical configu-
ration ofDNA (B DNA) to a more immuno-
genic left-handed helical configuration (Z
DNA) in vitro (81). This conversion has been
proposed as a mechanism contributing to the
development of anti-DNA antibodies in drug-
induced lupus (81). Others have shown that
bioreactive metabolites of phenytoin can cova-
lently bind and modify MHC molecules (82).
These authors have proposed that the modi-
fied MHC molecules trigger a T-cell response
analogous to chronic graft versus host disease,
which has features of a variety of systemic
autoimmune diseases including lupus,
rheumatoid arthritis, and sderoderma (83).
Similarly, oxidized metabolites of vinyl chlo-
ride, implicated in inducing a sclerodermalike
disease, can bind sulfhydryl and amino
groups, which also potentially modifies anti-
genicity or function (84). However, persua-
sive evidence demonstrating that these
mechanisms contribute to autoimmunity
in vivo is still lacking.

Cryptic Epitopes
The cryptic epitope hypothesis is based on
experiments demonstrating that T cells will
respond to peptide fragments ofself-molecules
not normally presented by antigen-presenting
cells. In general, proteins are degraded enzy-
matically and the resultant peptide fragments
presented in MHC molecules at the cell sur-
face. The immune system is usually tolerant to
these self-peptides. However, if the peptides
are deaved differently then presented, novel
epitopes may be revealed and a response gen-
erated that may then also undergo epitope
spreading (85).

Gold ions are capable of deaving proteins
to generate cryptic epitopes. Gold salts are
implicated in autoimmune thrombocytopenia
and immune complex glomerulonephritis
through unknown mechanisms (76). Au(III),
a reactive metabolite of gold, can cleave
bovine ribonudease A in vitro and generate
cryptic epitopes capable of T-cell sensitization
(76). Heavy metals can also catalyze oxidation
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reactions mediated by reactive oxygen species.
Several sderoderma autoantigens, including
topoisomerase I, the large subunit of RNA
polymerase II, and the 70-kD subunit of the
Ul small nuclear ribonuclear protein are
cleaved by metal-catalyzed (Fe, Cu) oxidation
reactions, which may produce cryptic epi-
topes. Because episodic ischemia-reperfusion
such as that seen in the vasospasm associated
with sderoderma can generate reactive oxygen
species, this mechanism may theoretically con-
tribute to some of the autoantibodies seen in
this disease (86), although in vivo evidence is
still lacking.

Other Mechanisms
Mechanisms proposed for infectious or other
etiologies of autoimmunity may also be
applied to xenobiotics, although experimental
evidence for these is largely absent. Antigenic
mimicry has been proposed as a mechanism
potentially causing autoimmunity (87). This
concept is usually applied to infectious agents
having molecules bearing one or more epitopes
resembling human antigens, such that
responses to the foreign antigen cross react
with self-antigens. It is conceivable that a xeno-
biotic could behave in a similar fashion
through haptenic effects. Superantigens, which
noncovalently cross link MHC molecules with
the TCR, have also been nominated as poten-
tially triggering autoimmunity (88). It is possi-
ble that haptenic modification of a protein
binding MHC molecules or the TCR, such as
CD4 or CD8, could similarly stabilize
TCR-MHC interactions. Xenobiotic-induced
mutations in self-proteins could also occur and
serve as a novel antigen and induce a response
through epitope spreading. Finally, immune
responses to antigenic determinants on anti-
bodies or the TCR, known as idiotypes, have
been proposed as a mechanism contributing to
the development of anti-DNA antibodies
(89), and it is possible that the haptenic modi-
fication of an immunoglobulin idiotype could
induce an autoimmune response. Given the
large number of ways xenobiotics can poten-
tially modify proteins, additional mechanisms
probably exist as well.

Conclusions
Several condusions may be derived from this
review. First, the majority of the mechanisms
proposed for xenobiotic-induced autoimmu-
nity can be arbitrarily classified into three
broad categories: defects in lymphocyte dele-
tion, modification of gene expression by the
cells participating in the immune response to
break tolerance, and direct interactions with
self-proteins leading to either expression of
new epitopes or unveiling of cryptic epitopes.
These general concepts suggest additional
mechanisms by which xenobiotics might trig-
ger autoimmunity. Second, some mechanisms

may be common to a variety of agents. The
ability of different metal ions to cleave pro-
teins and of chemically distinct molecules to
inhibit DNA methylation and induce autoim-
munity support this contention. Third, it
would appear that different mechanisms can
produce similar diseases. The intrathymic
injection of PAHA and the treatment of
activated T cells with DNA methylation
inhibitors both induce anti-DNA antibodies,
most likely through distinct mechanisms.
Fourth, despite the large body of literature
addressing potential mechanisms by which
xenobiotics may induce autoimmunity, per-
suasive evidence demonstrating that these
mechanisms are actually operant in humans
with xenobiotic-induced autoimmunity is still
lacking. Finally, the potential for numerous
and as yet unidentified mechanisms exists,
highlighting a need for further work in this
area. It is hoped that the material presented at
the workshop Linking Environmental Agents
and Autoimmune Disease will stimulate fur-
ther studies on this topic.

REFERENCES AND NoTEs

1. Yung RL, Richardson BC. Drug-induced lupus. Rheum Dis Clin
North Am 20:61-86(1994).

2. Philen RM, Posada de Ia Paz M, Hill RH, Schurz HH, Abaitua-
Borda I, Gomez de la Camara A, Kilboume EM. Epidemiology of
the toxic oil syndrome. Arch Toxicol 19:41-52(1997).

3. Gomez de la Camara A. Abaitua-Borda I, Posada de la Paz M.
Toxicologists versus toxicological disasters: toxic oil syndrome,
clinical aspects. Arch Toxicol 19:31-40 (1997).

4. Belongia EA, Hedberg CW, Gleich GJ, White KE, Mayeno AN,
loegering DA, Dunnette SL, Pirie PL, MacDonald KL, Osterholm
MT. An investigation into the cause of the eosinophilia-myalgia
syndrome associated with tryptophan use. Eng J Med
323:357-365(1990).

5. Kaufman LD, Gleich GJ. Eosinophilia myalgia syndrome. In:
Rheumatic Diseases and the Environment (Kaufman LD, Varga
J, eds). London:Amold, 1999:55-73.

6. Goodnow CC. Balancing immunity and tolerance: deleting and
tuning lymphocyte repertoires. Proc NatI Acad Sci USA
93:2264-2271 (1996).

7. Mondino A, Khoruts A, Jenkins MK. The anatomy of T-cell activa-
tion and tolerance. Proc NatI Acad Sci USA 93:2245-2252(1996).

8. Kronenberg M. Self-tolerance and autoimmunity. Cell
65:537-542 (1991).

9. Schwartz RH. Models of T cell anergy: is there a common mole-
cular mechanism? J Exp Med 184:1-B (1996).

10. Beverly B, Kang SM, lenardo MJ, Schwartz RH. Reversal of in
vitro T cell clonal anergy by 11-2 stimulation. Int Immunol
4:661-671 (1992).

11. Watanabe-Fukunaga R. Brannan Cl, Copeland NG, Jenkins NA,
Nagata S. lymphoproliferation disorder in mice explained by
defects in Fas antigen that mediates apoptosis. Nature
356:314-317 (1992).

12. Nagata S. Suda T. Fas and Fas ligand: Ipr and gid mutations.
Immunol Today 16:39-43 (1995).

13. Wu J, Zhou T. Zhang J. He J, Gause WC, Mountz JD. Correction
of accelerated autoimmune disease by early replacement of the
mutated lpr gene with the normal Fas apoptosis gene in the
T cells of transgenic MRL-Ipr/lIpr mice. Proc NatI Acad Sci USA
91:2344-2348 (1994).

14. Straus SE, Sneller M, lenardo MJ, Puck JM, Strober W. An
inherited disorder of lymphocyte apoptosis: the autoimmune lyi-
phoproliferative syndrome. Ann Intem Med 130:591-01 (1999).

15. DeFranco Al. Immunosuppressants at work. Nature
352:754-755 (1991).

16. Bucy RP, Xu XY, Li J, Huang GD. Cyclosporin A-induced auto-
immune disease in mice. J Immunol 151:1039-1050 (1993).

17. Sakaguchi N, Miyai K, Sakaguchi S. Ionizing radiation and
autoimmunity. JImmunol 152:2586-2595(1994).

18. Bonomo A. Kehn PJ, Payer E, Rizzo I, Cheever AW. Shevach

EM. Pathogenesis of post-thymectomy autoimmunity.
J Immunol 154:6602-6611 (1995).

19. Moreb JS, Kubilis PS, Mullins DL, Myers I, Youngblood M,
Hutcheson C. Increased frequency of autoaggression syndrome
associated with autologous stem cell transplantation in breast
cancer patients. Bone Marrow Transplant 19(2):101-106 (1997).

20. Kretz-Rommel A, Duncan SR, Rubin RL. Autoimmunity caused
by disruption of central T cell tolerance. J Clin Invest
99:1888-1896 (1997).

21. Kretz-Rommel A, Rubin RL. A metabolite of the lupus-inducing
drug procainamide prevents anergy induction in T-cell clones.
J Immunol 158:4465-4470 (1997).

22. Doerfler, W. DNA Methylation and gene activity. Annu Rev
Biochem 52:93-124 (1983).

23. Nan X, Ng HH, Johnson CA, Laherty CD, Tumer BM, Eisenman
RN, Bird A. Transcriptional repression by the methyl-CpG-bind-
ing protein MeCP2 involves a histone deacetylase complex.
Nature 393:386-38911998).

24. Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and
sequencing of a cDNA encoding DNA methyltansferase of
mouse cells. The carboxy-terminal domain of the mammalian
enzymes is related to bacterial restriction of methyltrans-
ferases. J Mol Biol 203:971-983 (1988).

25. Richardson BC, Strahler JR, Pivirotto TS, Duddus J, Bayliss GE,
Gross LA, O'Rourke KS, Powers DJ, Hanash SM, Johnson MA.
Phenotypic and functional similarities between 5-azacytidine
treated T cells and a T-cell subset in patients with active sys-
temic lupus erythematosus. Arthritis Rheum 35:647-662 (1992).

26. Richardson BC, Powers D, Hooper F, Yung RL, O'Rourke K.
Lymphocyte function-associated antigen 1 overexpression and
T cell autoreactivity. Arthritis Rheum 37:1363-1372 (1994).

27. Yung R, Powers D, Johnson K. Amento E, Carr D, Laing T, Yang
J, Chang S, Hemati N, Richardson B. Mechanisms of drug-
induced lupus. Il: T cells overexpressing lymphocyte function-
associated antigen 1 become autoreactive and cause a
lupuslike disease in syngeneic recipients. J Clin Invest
97:2866-2871 (1996).

28. Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S,
Richardson B. Hydralazine and procainamide inhibit T cell DNA
methylation and induce autoreactivity. J Immunol
140:2197-2200 (1988).

29. Yung RL, Chang S, Hemati N, Johnson K, Richardson BC.
Mechanisms of drug-induced lupus. IV: Comparison of pro-
cainamide and hydralazine with analogs in vitro and in vivo.
Arthritis Rheum 40:1436-1443 (1997).

30. Duddus J, Johnson KJ, Gavalchin J, Amento EP, Warren JS,
Chrisp C, Yung RL, Richardson BC. Treating activated CD4+ T cells
with either of two distinct DNA methyltransferase inhibitors, 5-
azacytidine or procainamide. is sufficient to induce a lupus-like
disease in syngeneic mice. J Clin Invest 92:38-53 (1993).

31. Yung RL, Quddus J, Chrisp CE. Johnson KJ, and Richardson BC.
Mechanisms of Drug Induced lupus. I: Cloned Th2 cells modi-
fied with DNA methylation inhibitors in vitro cause autoimmu-
nity in vivo. J Immunol 154:3025-3035 (1995).

32. Richardson B. Scheinbart I, Strahler J, Gross I, Hanash S,
Johnson M. Evidence for impaired T cell DNA methylation in
systemic lupus erythematosus and rheumatoid arthritis.
Arthritis Rheum 33:1665-1673 (1990).

33. Pazin MJ, Kadonaga JT. What's up and down with histone
deacetylation and transcription? Cell 89:325-328)1997).

34. Bird JJ, Brown DR. Mullen AC, Moskowitz NH, Mahowald MA,
Sider JR. Gajewski TF, Wang CR, Reiner SL. Helper T cell differen-
tiation is controlled bythe cell cycle. Immunity 9:229-237 (1998).

35. Kruh J. Effects of sodium butyrate, a new pharmacological
agent, on cells in culture. Mol Cell Biochem 42:65-82 (1982).

36. Chen WY, Bailey EC, McCune SL, Dong JY, Townes TM.
Reactivation of silenced, virally transduced genes by
inhibitors of histone deacetylase. Proc NatI Acad Sci USA
94:5798-5803 (1997).

37. Krieg AM, Steinberg AD. Analysis of thymic endogenous retrovi-
ral expression in murine lupus. J Clin Invest 86:809-816(1990).

38. Zardo G, Marenzi S, Caiafa P. Hi histone as a trans-acting fac-
tor involved in protecting genomic DNA from full methylation.
Biol Chem 379:647-654 (1998).

39. Zardo G, Caiafa P. The unmethylated state of CpG islands in
mouse fibroblasts depends on the poly(ADP-ribosyl)ation
process. J Biol Chem 273:16517-16520 (1998).

40. Yung RL, Richardson BC. Pathophysiology of drug-induced
lupus. In: Systemic lupus Erythematosus (Lahita RG, ed). New
York:Academic Press, 1998;909-928.

41. Ayer LM, Edworthy SM, Fritzler MJ. Effect of procainamide and
hydralazine on poly (ADP-ribosylation) in cell lines. lupus
2:167-172({1993).

42. Dkamoto 5, Azhipa D, Yu Y, Russo E, Dennert G. Expression of

Environmental Health Perspectives * Vol 107, Supplement 5 * October 1999 741



RAO AND RICHARDSON

ADP-ribosyltransferase on normal T lymphocytes and effects of
nicotinamide adenine dinucleotide on their function. J Immunol
160:4190-4198(1998).

43. Tsao BP, Cantor RM, Grossman JM. Theophilov N. Wallace DJ,
Arnett FC, Hartung K, Goldstein R, Kalunian KC, Hahn BH, et al.
ADFPTalIeles from the chromosome 1q41-q42 linked region are
associated with SLE. Arthritis Rheum 41:S80 (1998)

44. Chen HY, Pertusi RM, Kirkland JB, Rubin BR, Jacobson EL.
Biochemical characterization of ADP-ribose polymer metabo-
lism in SLE. Lupus 5:14-21 (1996).

45. Lee JS, Haug BL, Sibley JT. Decreased mRNA levels coding for
poly (ADP-ribose) polymerase in lymphocytes of patients with
SLE. Lupus 3:113-116 (1994).

46. Da Silva JAP. Sex hormones, glucocorticoids and autoimmunity:
facts and hypotheses. Ann Rheum Dis 54:6-16 (1995).

47. Roubinian JR, Talal N, Greenspan JS, Goodman JR, Siiteri PK.
Effect of castration and sex hormone treatment on survival,
anti-nucleic acid antibodies, and glomerulonephritis in
NZB/NZW F, mice. J Exp Med 147:1568-1583 (1978).

48. Ahmed SA, Dauphinee MJ, Talal N. Effects of short-term
administration of sex hormones on normal and autoimmune
mice. J Immunol 134:204-210(1985).

49. Petri M, Robinson C. Oral contraceptives and systemic lupus
erythematosus. Arthritis Rheum 40:797-803(1997).

50. Cutolo M, Sulli A, Seriolo B, Accardo S, Masi AT. Estrogens, the
immune response and autoimmunity. Clin Exp Rheumatol
13:217-226(1995).

51. Rubanyi GM, Freay AD, Kauser K. Sukovich D, Burton G, Lubahn
DB, Couse JF, Curtis SW, Korach KS. Vascular estrogen recep-
tors and endothelium-derived nitric oxide production in the
mouse aorta. J Clin Invest 99:2429-2437 (1997).

52. Yung RL, Williams RM, Johnson K, Stoolman L, Chang S,
Richardson BC. Mechanisms of drug-induced lupus. Ill: Sex-
specific differences in T cell homing may explain increased
disease severity in female mice. Arthritis Rheum
40:1334-1343 (1997).

53. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol,
a polyphenolic compound found in grapes and wine, is an ago-
nist for the estrogen receptor. Proc NatI Acad Sci USA
94:14138-14143(1997).

54. Ortmann 0, Sturm R, Knuppen R, Emons G. Weak estrogenic
activity of phenol red in the pituitary gonadotroph: re-evaluation
of estrogen and antiestrogen effects. J Steroid Biochem
35:17-22(1990).

55. Zhang Z, Michael JG. Orally inducible immune unresponsive-
ness is abrogated by IFN-'y treatment. J Immunol
144:4163-4165 (1990).

56. Gianani R, Sarvetnick N. Viruses, cytokines, antigens, and
autoimmunity. Proc NatI Acad Sci USA 93:2257-2259 (1996).

57. Takorabet L, Ropars A, Raby C, Charreire J. Phenothiazine
induces de novo MHC Class II antigen expression on thyroid
epithelial cells. J Immunol 154:3593-3602 (1995).

58. Koeger AC, Lang T, Alcaix D, Milleron B, Rozenberg S. Chaibi P,
Arnaud J, Mayaud C. Camus JP, Bourgeois P. Silica-associated
connective tissue disease. Medicine 74:221-237 (1995).

59. Cooper GS, Dooley MA, Treadwell EL, St. Clair EW, Parks CG,
Gilkeson GS. Hormonal, environmental, and infectious risk fac-
tors for developing systemic lupus erythematosus. Arthritis
Rheum 41:1714-1724 (1998).

60. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M,
Allen R, Sidman C. Proetzel G, Calvin D, et al. Targeted disrup-
tion of the mouse transforming growth factor-J1 gene results in
multifocal inflammatory disease. Nature 359:693-699 (1992).

61. Wahl SM. Transforming growth factor ): the good, the bad, and
the ugly. J Exp Med 180:1587-1590 (1994).

62. Chen JJ, Yongnian S, Nabel GJ. Regulation of the proinflamma-
tory effects of Fas ligand (CD95L). Science 282:1714-1717 (1998).

63. Street NE, Mosmann TR. Functional diversity of T lymphocytes
due to secretion of different cytokine patterns. FASEB J
5:171-177 (1991).

64. Miossec P, Vandenberg WIM. Thl/Th2 cytokine balance in
arthritis. Arthritis Rheum 40:2105-2115 (1997).

65. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA,
Sider JR, Gajewski TF, Wang C, Reiner SL Helper T Cell differen-
tiation is controlled by the cell cycle. Immunity 9:229-237 (1998).

66. Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY.
Cutting edge: role of macrophage migration inhibitory factor in
inhibiting NK cell activity and preserving immune privilege.
J Immunol 160:5693-5696(1998).

67. Jacob CO, McDevitt HO. Tumour necrosis factor-a in murine
autoimmune 'lupus' nephritis. Nature 331:356-358(1988).

68. Maini RN, Elliott MJ, Charles PJ, Feldmann M. Immunological
intervention reveals reciprocal roles for tumor necrosis factor-a
and interleukin-10 in rheumatoid arthritis and systemic lupus ery-
thematosus. Springer Semin Immunopathol 16:327-336 (1994).

69. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD
098059 is a specific inhibitor of the activation of mitogen-acti-
vated protein kinase in vitro and in vivo. J Biol Chem
270:27489-27494(1995).

70. Deng C. Yang J, Scott J, Hanash S, Richardson B. Role of the ras-
MAPK signaling pathway in the DNA methyltransferase response
to DNA hypomethylation. Biol Chem 379:1113-1120(1998).

71. Salas VM, Burchiel SW. Apoptosis in daudi human B cells in
response to benzo)alpyrene and benzolalpyrene-7,8-dihydrodiol.
Toxicol AppI Pharmacol 151(2):367-376 (1998).

72. Tannheimer SL, Ethier SP, Caldwell KK, Burchiel SW.
Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phos-
phorylation and insulin-like growth factor signaling pathways in
the MCF-10A human mammary epithelial cell line.
Carcinogenesis 19(7:1291-1297 (1998).

73. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted
in systemic lupus erythematosus are clustered in two popula-
tions of surface structures on apoptotic keratinocytes. J Exp
Med 179:1317-1330 (1994).

74. Tan EM. Autoimmunity and apoptosis. J Exp Med
179:1083-1086 (1994).

75. Gottesfeld JM, Neely 1, Trauger JW, Baird EE, Dervan PB.
Regulation of gene expression by small molecules. Nature
387:202-205 (1997).

76. Griem P, Wulferink M, Sachs B, Gonzalez JB, Gleichmann E.
Allergic and autoimmune reactions to xenobiotics: how do they
arise? Immunol Today 19:133-141 (1998).

77. Craft J, Fatenejad S. Self antigens and epitope spreading in
systemic autoimmunity. Arthritis Rheum 40:1374-1382 (1997).

78. James JA, Gross T, Scofield RH, Harley JB. Immunoglobulin epi-
tope spreading and autoimmune disease after peptide immu-
nization: Sm B/B'-derived PPPGMRPP and PPPGIRGP induce
spliceosome autoimmunity. J Exp Med 181:453-461 (1995).

79. Reuter R, Tessars G, Vohr HW, Gleichmann E, Luhrmann R.
Mercuric chloride induces autoantibodies against U3 small
nuclear ribonucleoprotein in susceptible mice. Proc NatI Acad
Sci USA 86:237-241 (1989).

80. Pollard KM, Lee DK, Casiano CA, Bl0thner M, Johnston M, Tan
EM. The autoimmunity-inducing xenobiotic mercury interacts
with the autoantigen fibrillarin and modifies its molecular and
antigenic properties. J Immunol 158:3521-3528 (1997).

81. Thomas TJ, Messner RP. Effects of lupus-inducing drugs on
the B to Z transition of synthetic DNA. Arthritis Rheum
29:638-643 (1986).

82. Gleichmann H. Studies on the mechanism of drug sensitization:
T-cell dependent popliteal lymph node reaction to diphenylhy-
dantoin. Clin Immunol Immunopathol 18:203-211 (1981).

83. Gleichmann E, Pals ST, Rolink AG, Radaszkiewicz T, Gleichmann
H. Graft-versus-host reactions: clues to the etiopathology of a
spectrum of immunological diseases. Immunol Today
5:324-332 (1984).

84. Ward A, Udnoon S, Watkins J, Walker AE, Darke CS.
Immunological mechanisms in the pathogenesis of vinyl chlo-
ride disease. Br Med J 1:936-938 (1976).

85. Lanzavecchia A. How can cryptic epitopes trigger autoimmu-
nity?J ExpMed 181:1945-1948(1995).

86. Casciola-Rosen L, Wigley F, Rosen A. Scleroderma autoantigens
are uniquely fragmented by metal-catalyzed oxidation reactions:
implications for pathogenesis. J Exp Med 185:71-79 (1997).

87. Theofilopoulos AN. The basis of autoimmunity. Part l:
Mechanisms of aberrant self-recognition. Immunol Today
16:90-98 (1995).

88. Schiffenbauer J, Soos J, Johnson H. The possible role of bacte-
rial superantigens in the pathogenesis of autoimmune disor-
ders. Immunol Today 19:117-120 (1998).

89. Singh RR, Kumar V, Ebling FM, Southwood S, Sette A, Sercarz
EE, Hahn BH. T cell determinants from autoantibodies to DNA
can upregulate autoimmunity in murine systemic lupus erythe-
matosus. J Exp Med 181:2017-2027 (1995).

742 Environmental Health Perspectives * Vol 107, Supplement 5 * October 1999


